On matrix points in Čech–Stone compactifications of discrete spaces
نویسنده
چکیده
We prove the existence of (2 , τ)-matrix points among uniform and regular points of Čech–Stone compactification of uncountable discrete spaces and discuss some properties of these points.
منابع مشابه
Strong shape of the Stone-Čech compactification
J. Keesling has shown that for connected spaces X the natural inclusion e : X → βX of X in its Stone-Čech compactification is a shape equivalence if and only if X is pseudocompact. This paper establishes the analogous result for strong shape. Moreover, pseudocompact spaces are characterized as spaces which admit compact resolutions, which improves a result of I. Lončar.
متن کاملUltrafilters on G-spaces
For a discrete group G and a discrete G-space X, we identify the Stone-Čech compactifications βG and βX with the sets of all ultrafilters on G and X, and apply the natural action of βG on βX to characterize large, thick, thin, sparse and scattered subsets of X. We use G-invariant partitions and colorings to define G-selective and G-Ramsey ultrafilters on X. We show that, in contrast to the set-...
متن کاملAlgebra and Topology in the Stone-Čech Compactification
The Stone-Čech compactification of discrete semigroups is a tool of central importance in several areas of mathematics, and has been studied extensively. We think of the Stone-Čech compactification of a discrete abelian semigroup G as the set βG of ultrafilters on G, where the point x ∈ G is identified with the principal ultrafilter {A ⊆ G ∣∣x ∈ A}, and the basic open sets are those of the form...
متن کاملEnd compactifications and general compactifications
We use the insights of Robinson’s nonstandard analysis as a powerful tool to extend and simplify the construction of compactifications of regular spaces. In particular, we deal with the Stone-Čech compactification and compactifications formed from topological ends. For the nonstandard extension of a metric space, the monad of a standard point x is the set of all points infinitesimally close to ...
متن کاملThe Lattice of Ordered Compactifications of a Direct Sum of Totally Ordered Spaces
The lattice of ordered compactifications of a topological sum of a finite number of totally ordered spaces is investigated. This investigation proceeds by decomposing the lattice into equivalence classes determined by the identification of essential pairs of singularities. This lattice of equivalence classes is isomorphic to a power set lattice. Each of these equivalence classes is further deco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010